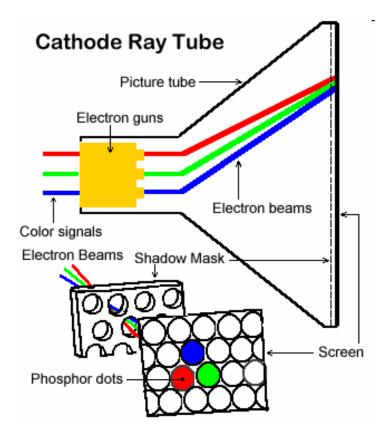
Energy Efficiency in Current Television Display Technologies

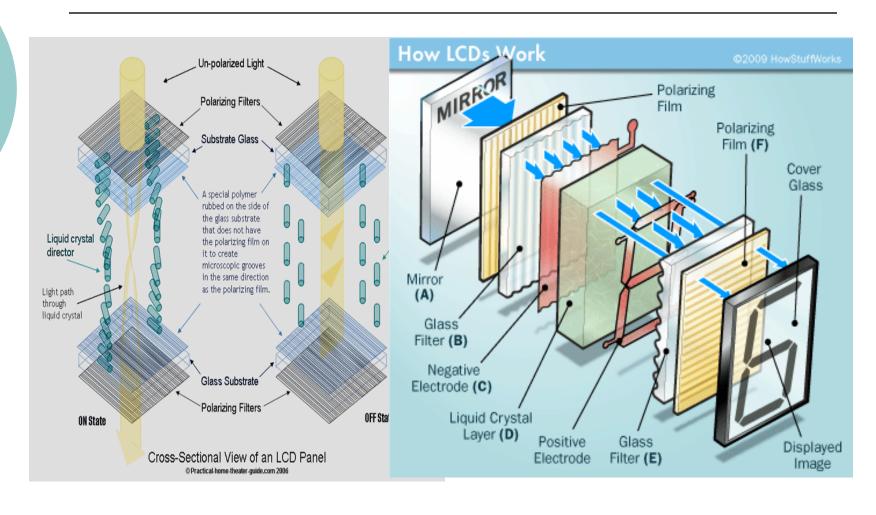
Andrew Fang MSE 395


Current Energy Usage

- According to CEA, 36 million TVs in 2009
- >50 billion kWh annually
- 4% of all household electricity use
- Equivalent to power needed for all homes in New York

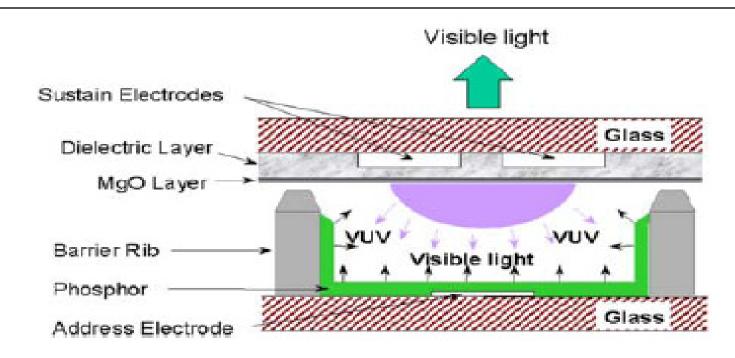
2008 California Data

Television Type	Existing Stock (Million Units)
CRT	22.3
DLP and Projection	0.7
LCD	10.6
Plasma	1.8
Total	35.4


Cathode Ray Tube (CRT)

http://www.jegsworks.com/Lessons/lesson5/lesson5-4.htm

- Electron Beams turned on/off depending on color use
- Leaded glass tubes to insulate electron beams

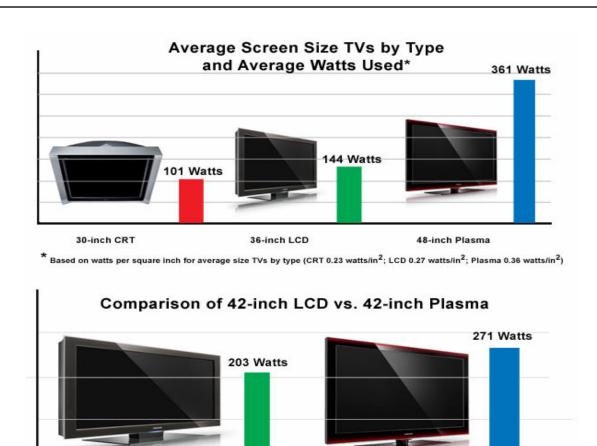

Liquid Crystal Display (LCD)

LCD Details

- Pixel Three Subunits with red/green/blue filters in order to produce spectrum
- Thin Film Transistor sustains voltage across pixel, until new signal arrives
- Liquid Crystal Properties
 - Dielectric Anisotropy
 - Temperature Range requires 10-20 compounds

Plasma Display Panel (PDP)

 Three subpixels with red/blue/green phosphors

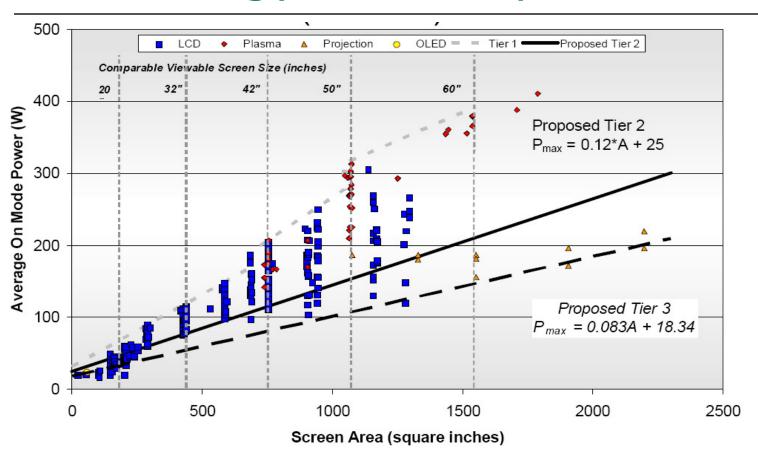

PDP Details

- 2 lumens/W vs 5 lumens/W
- Efficiencies
 - Vacuum Ultraviolet Radiation ~ 10%
 - Phosphors ~ 20-40%
- Electrodes
 - Sustain electrode Indium Tin Oxide
 - Address electrode Establishes voltage difference
- Control voltage difference, control intensity

How to Increase Efficiency

- Increase Panel Transmittance
- Improve luminous efficiency
- More efficient lamps/backlight structure – Sony
- Intelligent ambient light sensing –
 Sharp
- New Sony Bravia model "Most Energy Efficient Television" – 32in, 89W

Comparing Technologies



42-inch Plasma

Source: California Energy Commission staff

42-inch LCD

EPA Energy Star Requirements

o Tier 2 – 2010

o Tier 3 - 2012

Conclusions

- New LCD models have just become more efficient than CRT
- Cheaper Production Costs/Less
 Defects → Bigger TVs for same price
- OLEDs and other emerging technologies may prove to be more efficient

Questions?

Bibliography

- EPA Presentation http://www.energystar.gov/index.cfm?c=revisions.television_spec
- Pauluth, D. and Tarumi, K. "Optimization of Liquid Crystals for Television," (2005) J. SID 13, pp. 693-702.
- California Energy Commission, Dec. 2008
 http://www.energy.ca.gov/2008publications/CEC-400-2008-028-SD.pdf
- J. G. Eden, "Information display early in the 21st century: Overview of selected emissive display technologies," Proc. IEEE, vol. 94, no. 3, pp. 567–574, Mar. 2006.
- http://en.wikipedia.org/wiki/TFT_LCD
- http://en.wikipedia.org/wiki/Plasma_display
- http://www.practical-home-theater-guide.com/lcd-display.html
- o D. E. Mentley, "State of flat panel display technology and future trends," Proc. IEEE, vol. 90, no. 4, pp. 453–459, Apr. 2002.
- http://www.sony.net/SonyInfo/News/Press/200806/08-0617E/index.html
- http://www.sony.net/SonyInfo/technology/technology/theme/oel_01 .html